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DATA S1: IMBALANCED DATA: NEATER 

The MESA data are severely imbalanced in terms of outcomes, that is, the size of the class with 

events (i.e., minority class) is much smaller than the size of the class without events (i.e., 

majority class), and thus the decision boundary for ML methods would be severely biased and 

could result in poor performance. To cope with this skewed class distribution issue, we selected 

the filtering of over-sampled data using non-cooperative game theory (NEATER) algorithm2, 

which is an oversampling data augmentation algorithm that employs cooperative game theory to 

generate artificial data of the minority class. Non-cooperative game theory3 addresses the 

interaction between individual rational decision makers, where all the data are players and the 

goal is to uniformly and consistently label all of the synthetic data created by any oversampling 

technique. Unlike other over-sampling approaches, NEATER does not automatically consider 

synthetic data as part of the minority class. Instead, it keeps synthetic samples unlabeled, at first. 

These samples then participate in a non-cooperative game to determine their most likely class 

membership, minority or majority. All the synthetic data that end up belonging to the minority 

class are kept, and the rest are eliminated. 

A detailed description of the main steps of the NEATER implementation in this work can be 

summarized as follows. First, an oversampled method is used, such as the Synthetic Minority 

Over-Sampling Technique (SMOTE)4 to generate synthetic data. The use of SMOTE is justified 

by the fact that it creates samples that are closely related to the minority class, which causes the 

classifier to create larger decision regions. Then, both the original and synthetically generated 

data are considered as players, and the possible class memberships are considered strategies 

available to all game players. Note that, only the synthetic data play to determine their class 

membership. There are two types of players: 𝐼𝑐, which denotes players that already belong to a 



class, and 𝐼𝑢, which denotes unlabeled players or synthetic samples. Each  𝐼𝑢 player interacts 

with a number of its neighbors 𝐼𝜙, one neighbor at a time. Also, each player can choose among 

two available strategies 𝑆𝑖 = {𝑚, 𝑀} with a probability of 0.5, where 𝑚 stands for minority and 

𝑀 for majority. A mixed strategy 𝑥𝑖 (i.e., combination of strategies from which one is randomly 

chosen with specified probability) for player 𝑖 is the probability distribution over his set of 

strategies 𝑆𝑖. Then, for each player 𝑖, its 𝑘, where 𝑘 = 5, nearest neighbors are computed and for 

each player interacting with each of its 𝑘 neighbors, the utility functions are computed as 

follows: 

𝑢𝑖(𝑥) = ∑ (𝑥𝑖
𝑇𝐴𝑖𝑗𝑥𝑗) + ∑ ∑ (𝑥𝑖

𝑇𝐴𝑖𝑗𝑒𝑗
𝑑)

𝑗∈𝐼𝜙∩𝐼𝑐|𝑑

2

𝑑=1𝑗∈𝐼𝜙∩𝐼𝑢

 , 

where 𝑑 = 1 is playing the minority class and 𝑑 = 2 is the majority class, 𝑒𝑗
𝑑 ∈ 𝑆𝑖 is an extreme 

mixed strategy with 𝑒𝑗
1 = (1,0) and 𝑒𝑗

2 = (0,1), and 𝐴𝑖𝑗 is the partial payoff matrix between two 

players 𝑖 and 𝑗. The set 𝐼𝑐|𝑑 is the set of players who always play their 𝑑th strategy. After that, the 

average payoff in the whole population is computed: 

𝑢(𝑥) = 𝑥𝑖
𝑇𝐴𝑖𝑗𝑥𝑗  . 

Then, iteratively, discrete-time replicator dynamic is applied to study the evolution of the 

minority strategy probability: 

𝑥𝑖
𝑚(𝑡 + 1) =

𝛼 + 𝑢𝑖(𝑒𝑖
𝑚)

𝛼 + 𝑢𝑖(𝑥(𝑡))
𝑥𝑖

𝑚, 



if a maximum number of iterations is reached, the process stops, otherwise, 𝑡 is increased by one 

and the average payoff for the next player is computed. Finally, for each player in 𝐼𝑢, the class 

membership with the highest probability is assigned.  

An example of the number of the synthetic data of the minority class generated by NEATER and 

their characteristics for the “Male White Race” MESA subgroup can be seen in TABLE S6. 



DATA S2: TWO-FOLD CROSS VALIDATION 

To ensure and increase the model's robustness and ability to generalize under unknown samples, 

we employed two-fold cross validation to randomly split the original dataset into two equally 

sized halves, a training set to train the model, and a test set to evaluate it. This type of cross 

validation has been widely used in the machine learning literature for predicting high-risk 

individuals.5-8 To ensure that the random split of the dataset will always result in having positive 

and negative examples in both training and testing sets, we employed the following procedure. 

First, we randomly shuffle the sub-cohort of samples with CVD events into two parts (50% of 

the positive samples for training and the remaining 50% for testing). Then, the remaining sub-

cohort of negative samples is also randomly split into two halves, and the corresponding training 

and testing subsets are fused so that each of them will contain positive and negative examples. 

The training and testing sets are independent and do not overlap with each other. At this point, 

we train our model on subset A and evaluate on subset B, and next we reverse the order (i.e., 

train on subset B and evaluate on subset A). This process is repeated 10 times, so that statistical 

reliability of the evaluation process may be ensured9-11, with each of the different subsets used 

exactly once as the validation data, and the results are averaged over all the examined 

configurations. Note that at each iteration the training and evaluation processes start from scratch 

so that there is no memory of any the previous learned model, and thus biased results are 

avoided. One of the main reasons for using two-fold cross validation is that the MESA data are 

extremely imbalanced and there is not enough data of the positive class; furthermore, by 

repeating the random split multiple times, we are able to train on more positive examples. A fair 

way to evaluate the model is to split the dataset into two halves and train on as many positive 

examples as possible, since it is a powerful general technique, when the data are sparse. 



DATA S3: SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM)1 is a discriminative classifier, which is designed for supervised 

learning. The learning model is given a training set of examples (or inputs), belonging to two 

classes, with associated class labels (or output values). The examples are in form of attribute 

vectors and the SVM finds the optimal maximum-margin hyper-plane, which separates the input 

data. Although there exist multiple hyper-planes that offer a solution to the problem, a hyper-

plane may be a bad solution if it lies too close to the points, as it is noise-sensitive and may not 

generalize well. Thus, SVMs aim at finding the hyper-plane that gives the largest minimum 

distance to the training examples.  In other words, given a set of 𝑁 training examples that 

consists of pairs of feature vectors 𝑥𝑖  with 𝑖 = 1, … , 𝑁, that denote the pattern to be classified, 

along with their corresponding class labels 𝑦𝑖, where 𝑥 ∈ ℝ𝑑, with 𝑑 being the number of 

features for each sample (i.e., age, sex, ethnicity, total cholesterol, HDL cholesterol, systolic 

blood pressure, hypertension, diabetes, and smoking status) and 𝑦 ∈ {−1, +1}, where label “-1” 

corresponds to subjects without an event and label “+1” corresponds to subjects with an event. 

The problem is defined as constructing the decision function that correctly classifies an input 

pattern that is not the training set. The SVM determines the decision hyper-plane between the 

two classes, the positive class 𝑦1 (i.e., subjects with an event) and the negative class 𝑦2 (i.e., 

subjects without an event), which is obtained by the solution of the following optimization 

problem: 

minimize
𝑤,𝑏,𝜉

{
1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

}  ,  

subject to: 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁 

where 𝑤 is a is a normal vector perpendicular to the hyper-plane, ||𝑤||
2

 indicates the size of the 



margin, 𝐶 is a positive constant that reflects the influence of margin errors, 𝑏 determines the 

offset of the hyper-plane from the origin along the normal vector 𝑤, and 𝜉𝑖 are the slack 

variables, which measure the degree of misclassification of the datum 𝑥𝑖. In our implementation, 

the kernel “trick” is used with a function 𝜙(𝑥𝑖) that maps the data into a higher dimensional 

space, where various separating planes would be evaluated and ultimately a hyper-plane can be 

found. 

The minimization process is a problem of Lagrangian optimization that can be solved by 

transforming to the dual form and using Lagrange multipliers to obtain the weight vector 𝑤 and 

the bias 𝑏 of the optimal hyper-plane as follows: 

minimize
𝑎

 𝑅(𝑎) =  
1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) − ∑ 𝑎𝑖

𝑁

𝑖=1

𝑁

𝑖,𝑗=1

, 

subject to: ∑ 𝑦𝑖𝑎𝑖 = 0, 0 ≤ 𝑎𝑖 ≤ 𝐶

𝑁

𝑖−1

 

For each testing sample, the kernel matrix 𝐾 between each of the training samples and the 

respective testing sample is computed. Thus, the decision function 𝑓(𝑥) is given by:  

𝑓(𝑥) =  sgn (∑ 𝑦𝑖𝑎𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑁

𝑖=1

) , 

where the terms 𝑎𝑖, with 𝑖 = 1, … , 𝑁 constitute a dual representation for the weight vector 𝑤 in 

terms of the training set, such as: 

𝑤 = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖 .

𝑁

𝑖=1

 



Moreover, in our experiments, we used as kernel function the radial basis function (RFB) kernel, 

which is defined as: 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ||𝑥𝑖−𝑥𝑗||
2

) , 𝛾 > 0 

To estimate the value of the training parameters, for each of the 16 ML-based models (i.e., eight 

ML-based models for “Hard CVD” events and eight models for “All CVD” events), we used 

two-fold cross-validation by setting the values of parameter 𝐶 to 2𝑘, with 𝑘 ∈ {−5, … , 15} and 

the values of the kernel coefficient 𝛾 were set to 2𝑘, with 𝑘 ∈ {−15, … , 3}.  

For visualization purposes, we projected the high-dimensional feature space into a 3D feature 

space using the Principal Component Analysis (PCA). Because of the high dimensionality of the 

input training data, the decision hyper-plane between the class samples with an event and the 

class samples without an event is transformed into a hyper-surface. An example of the 3D hyper-

surface for the MESA male group for classifying “Hard CVD” and “All CVD” events can be 

seen in the FIGURE S1. 



TABLE S1. MESA Cohort Baseline Characteristics of Study Population and Subgroups of Interest. Continuous variables are 

expressed as mean ± standard deviation. Categorical variables are presented as absolute numbers and frequencies. *The ACC/AHA 

Risk Calculator does not use these variables; therefore, they were not included in the Machine Learning CVD predictive models. 

†High sensitivity C-reactive protein (hsCRP) is also expressed as a geometric mean with 90% confidence interval since this variable is 

not normally distributed. 
 

Non-Statin Users Statin Users 

All  

(N = 5,415) 

Hard CVD 

(N = 381) 

All CVD 

(N = 775) 

ACC/AHA < 

9.75%  

13yr risk 

(N = 3,092) 

ACC/AHA ≥ 

9.75%  

13yr risk 

(N = 2,323) 

ML: Low 

Risk (13yr) 

(N = 4,844) 

ML: High 

Risk (13yr) 

(N = 571) 

Lipid 

Lowering 

Medication 

(N = 1,044) 

Age, y 60.6 ± 9.7 65.5 ± 9.2 65.5 ± 9.0 54.9 ± 6.9 68.2 ± 7.2 59.9 ± 9.6 66.0 ± 8.6 65.0 ± 8.3 

Male, n% 2,563 (47.3%) 222 (58.3%) 477 (61.6%) 1,119 (36.2%) 1,445 (62.2%) 2,204 (45.5%) 359 (62.9%) 497 (47.6%) 

Female, n% 2,852 (52.7%) 159 (41.7%) 298 (38.5%) 1,973 (63.8%) 878 (37.8%) 2,640 (54.5%) 212 (37.1%) 547 (52.4%) 

Ethnicity, n%  
       

     White 2,028 (37.5%) 145 (38.0%) 322 (41.5%) 1,224 (39.6%) 804 (34.6%) 1,806 (37.3%) 222 (38.9%) 456 (43.7%) 

     Asian 663 (12.2%) 27 (7.1%) 52 (6.7%) 405 (13.1%) 258 (11.1%) 602 (12.4%) 61 (10.7%) 104 (10.0%) 

African 

American 

1,484 (27.4%) 107 (28.1%) 223 (28.8%) 717 (23.2%) 767 (33.0%) 1,334 (27.5%) 150 (26.2%) 296 (28.3%) 

     Hispanic 1,240 (22.9%) 102 (26.8%) 178 (23.0%) 746 (24.1%) 494 (21.3%) 1,102 (22.8%) 138 (24.2%) 188 (18.0%) 

Total Cholesterol, 

mg/dL 

196.6 ± 35.5 197.6 ± 33.8 195.9 ± 36.1 196.2 ± 34.7 197.1 ± 36.5 196.7 ± 35.9 195.8 ± 31.3 182.9 ± 35.3 



HDL Cholesterol, 

mg/dL 

51.0 ± 14.9 47.7 ± 14.0 47.8 ± 13.7 52.7 ± 15.0 48.7 ± 14.5 51.5 ± 15.1 46.8 ± 12.9 50.3 ± 13.9 

Systolic Blood 

Pressure, mm Hg 

125.3 ± 21.0 135.7 ± 22.2 134.5 ± 21.9 116.7 ± 16.5 136.8 ± 21.0 124.2 ± 20.8 134.9 ± 20.3 129.2 ± 21.5 

Hypertension, n% 1,724 (31.8%) 173 (45.4%) 364 (47.0%) 578 (18.7%) 1,146 (49.3%) 1,468 (30.3%) 256 (44.8%) 627 (60.1%) 

Diabetes, n% 505 (9.3%) 69 (8.1%) 147 (19.0%) 99 (3.2%) 406 (17.5%) 451 (9.3%) 54 (9.5%) 224 (21.5%) 

Smoking, n%  
       

Current 

Smoking 

765 (14.1%) 79 (20.7%) 145 (18.7%) 352 (11.4%) 413 (17.8%) 663 (13.7%) 102 (17.9%) 104 (10.0%) 

     Prior Smoking 1,938 (35.8%) 134 (35.2%) 314 (40.5%) 1,036 (33.5%) 902 (38.8%) 1,724 (35.6%) 214 (37.4%) 427 (40.9%) 

     Never 2,712 (50.1%) 168 (44.1%) 316 (40.8%) 1,704 (55.1%) 1,008 (43.4%) 2,457 (50.7%) 255 (44.7%) 513 (49.1%) 

*Family History 

Heart Attack, n%  

2,082 (38.5%) 184 (48.3%) 370 (47.7%) 1,158 (37.5%) 923 (39.7%) 1,830 (37.8%) 252 (44.1%) 511 (48.9%) 

*Coronary Artery 

Calcification, 

Agatston 

118.1 ± 370.0 284.8 ± 

557.3 

355.4 ± 

713.2 

36.3 ± 155.7 227 ±515.9 103.6 ± 344.6 242.0 ± 

524.7 

246.0 

±556.3 

*†hsCRP, mg/L 3.9 ± 6.0 

1.96 (1.88 -  

2.03) 

4.4 ± 6.3 

2.29 (2.01 - 

2.56) 

4.6 ± 7.0 

2.37 (2.17 -

2 .56) 

3.7 ± 5.4 

1.82 (1.72 - 

1.92) 

4.2 ± 6.6 

2.16 (2.05 - 

2.26) 

3.9 ± 5.9 

1.98 (1.90 - 

2.05) 

3.6 ± 6.0 

1.79 (1.57 - 

2.02) 

3.3 ± 5.0 

1.76 (1.61 - 

1.92) 

  



TABLE S2. Risk Calculator Comparison, when Excluding Statin Users from the Analysis: Sensitivity-Specificity-Other Performance 

Metrics. 

Event Model 
Sn 

(95% CI) 
p-value 

Sp 

(95% CI) 
p-value FN FP TP TN 

Acc 

(95% CI) 
p-value 

NRI 

(95% CI) 
p-value 

Male 

Hard CVD 

ACC/AHA Risk 

Calculator  

0.84 ± 0.1 

(0.78 - 0.88) 
-- 

0.46 ± 0.1 

(0.44 - 0.48) 
-- 36 1,259 186 1,082 

0.50 ± 0.1 

(0.48 - 0.51) 
-- -- -- 

ML Risk 

Calculator  

0.89 ± 0.1 

(0.84  0.93) 
≤0.001 

0.93 ± 0.1 

(0.92 - 0.94) 
≤0.001 24 161 198 2,180 

0.93 ± 0.1 

(0.92 - 0.94) 
≤0.001 

0.52 

(0.50 - 0.54) 
≤0.001 

All CVD 

ACC/AHA Risk 

Calculator  

0.77 ± 0.1 

(0.72 - 0.80) 
-- 

0.53 ± 0.1 

(0.50 - 0.55) 
-- 112 988 365 1,098 

0.57 ± 0.1 

(0.55 - 0.59) 
-- -- -- 

ML Risk 

Calculator 

0.97 ± 0.1 

(0.95 - 0.99) 
≤0.001 

0.83 ± 0.1 

(0.81 - 0.84) 
≤0.001 13 358 464 1,728 

0.86 ± 0.1 

(0.84 - 0.87) 
≤0.001 

0.50 

(0.48 - 0.52) 
≤0.001 

Female 

Hard CVD 

ACC/AHA Risk 

Calculator  

0.61 ± 0.1 

(0.53 - 0.67) 
-- 

0.71 ± 0.1 

(0.69 - 0.73) 
-- 62 781 97 1,912 

0.70 ± 0.1 

(0.69 - 0.72) 
-- -- -- 

ML Risk 

Calculator  

0.79 ± 0.1 

(0.72 - 0.85) 
≤0.001 

0.97 ± 0.1 

(0.96 - 0.98) 
≤0.001 33 86 126 2,607 

0.96 ± 0.1 

(0.95 - 0.97) 
≤0.001 

0.44 

(0.42 - 0.46) 
≤0.001 

All CVD 

ACC/AHA Risk 

Calculator  

0.54 ± 0.1 

(0.48 - 0.60) 
-- 

0.76 ± 0.1 

(0.74 - 0.78) 
-- 137 608 161 1,946 

0.74 ± 0.1 

(0.72 - 0.75) 
-- -- -- 

ML Risk 

Calculator 

0.92 ± 0.1 

(0.88 - 0.94) 
≤0.001 

0.92 ± 0.1 

(0.90 - 0.93) 
≤0.001 25 217 273 2,337 

0.92 ± 0.1 

(0.90 - 0.93) 
≤0.001 

0.54 

(0.52 - 0.56) 
≤0.001 

All 

Hard CVD 

ACC/AHA Risk 

Calculator  

0.74 ± 0.1 

(0.70 - 0.79) 
-- 

0.60 ± 0.1 

(0.58 - 0.61) 
-- 98 2,040 283 2,994 

0.60 ± 0.1 

(0.59 - 0.62) 
-- -- -- 

ML Risk 

Calculator  

0.85 ± 0.1 

(0.81 - 0.88) 
≤0.001 

0.95 ± 0.1 

(0.94 - 0.96) 
≤0.001 57 247 324 4,787 

0.94 ± 0.1 

(0.93-  0.95) 
≤0.001 

0.46 

(0.45 - 0.47) 
≤0.001 

All CVD 
ACC/AHA Risk 

Calculator  

0.73 ± 0.1 

(0.70 - 0.76) 
-- 

0.62 ± 0.1 

(0.61 - 0.64) 
-- 204 1,752 571 2,888 

0.64 ± 0.1 

(0.63 - 0.65) 
-- -- -- 



ML Risk 

Calculator 

0.95 ± 0.1 

(0.93 - 0.97) 
≤0.001 

0.88 ± 0.1 

(0.86 - 0.89) 
≤0.001 38 575 737 4,065 

0.89 ± 0.1 

(0.88 - 0.90) 
≤0.001 

0.48 

(0.47 - 0.49) 
≤0.001 



TABLE S3. FLEMENGHO Cohort Baseline Characteristics of Study Population and Subgroups of Interest Including the Statin Users 

in the Study Population. Continuous variables are expressed as mean ± standard deviation. Categorical variables are presented as 

absolute numbers and frequencies. 

 

All  

(N = 1,348) 

Hard CVD 

(N = 265) 

ACC/AHA < 

9.75% 

13yr risk 

(N = 844) 

ACC/AHA ≥ 

9.75% 

13yr risk 

(N = 504) 

ML: Low Risk 

(13yr) 

(N = 1,008) 

ML: High Risk 

(13yr) 

(N = 340) 

Male, n% 672 (49.9%) 155 (58.5%) 324 (38.4%) 348 (69.1%) 446 (44.2%) 226 (66.5%) 

Female, n% 676 (50.1%) 110 (41.5%)  520 (61.6%) 156 (30.9%) 562 (55.8%) 114 (33.5%) 

Age, y 56.9 ± 9.5 61.3 ± 9.4  52.1 ± 6.5  65.0 ± 8.1 55.3 ± 9.1 61.6 ±8.8 

Total Cholesterol, mg/dL 232.4 ± 46.8 238.5 ± 48.4  227.2 ± 41.3  237.6 ± 45.3 230.4 ± 45.9 238.4 ± 49.1 

HDL Cholesterol, mg/dL 54.5 ± 16.9 51.9 ± 17.2 58.0 ± 15.6  48.2 ± 15.0 56.4 ± 17.1 48.9 ± 15.1 

Systolic Blood Pressure, 

mm Hg 
132.2 ± 18.0 137.5 ± 20.2 126.4 ± 14.7 141.8 ± 18.8 129.8 ± 16.4 139.2 ± 20.6 

Hypertension, n% 305 (22.6%) 78 (29.4%) 116 (13.7%) 189 (37.5%) 201 (19.9%) 104 (30.6%) 

Diabetes, n% 56 (4.2%) 16 (6.0%) 16 (1.9%) 40 (7.9%) 38 (3.8%) 18 (5.3%) 

Smoking, n%       

     Current Smoking 357 (26.5%) 90 (34.0%) 168 (19.9%) 189 (37.5%) 268 (26.6%) 89 (26.2%) 

     Prior Smoking 440 (32.6%) 80 (31.2%) 285 (33.8%) 155 (30.8%) 319 (31.6%) 121 (35.6%) 

     Never 551 (40.9%) 95 (35.8%) 391 (46.3%) 160 (31.7%) 421 (41.8%) 130 (38.2%) 



TABLE S4. Risk Calculator Comparison between Models Trained and Tested on FLEMENGHO Cohort: Sensitivity-Specificity-

Other Performance Metrics. 

Model 
Sn 

(95% CI) 
p-value 

Sp 

(95% CI) 
p-value FN FP TP TN 

Acc 

(95% CI) 
p-value 

NRI 

(95% CI) 
p-value 

Male 

ACC/AHA Risk 

Calculator 
0.74 ± 0.1 

(0.66 - 0.80) 
-- 

0.55 ± 0.1 

(0.50 - 0.59) 
-- 41 234 114 283 

0.59 ± 0.1 

(0.55 - 0.63) 
-- -- -- 

ML Risk 

Calculator  
0.85 ± 0.1 

(0.79 - 0.90) 
≤0.001 

0.99 ± 0.1 

(0.98 - 1.00) 
≤0.001 23 5 132 512 

0.96 ± 0.1 

(0.94 - 0.97) 
≤0.001 

0.55 

(0.51 - 0.59) 
≤0.001 

Female 

ACC/AHA Risk 

Calculator 
0.48 ± 0.1 

(0.39 - 0.58) 
-- 

0.82 ± 0.1 

(0.78 - 0.85) 
-- 57 103 53 463 

0.76 ± 0.1 

(0.73 - 0.79) 
-- -- -- 

ML Risk 

Calculator  
0.71 ± 0.1 

(0.61 - 0.79) 
≤0.001 

0.97 ± 0.1 

(0.95 - 0.98) 
≤0.001 32 16 78 550 

0.93 ± 0.1 

(0.91 - 0.95) 
≤0.001 

0.38 

(0.34 - 0.41) 
≤0.001 

All 

ACC/AHA Risk 

Calculator 
0.63 ± 0.1 

(0.57 - 0.69) 
-- 

0.69 ± 0.1 

(0.66 - 0.72) 
-- 98 337 167 746 

0.68 ± 0.1 

(0.65 - 0.70) 
-- -- -- 

ML Risk 

Calculator  
0.79 ± 0.1 

(0.74 - 0.84) 
≤0.001 

0.98 ± 0.1 

(0.97 - 0.99) 
≤0.001 55 21 210 1,062 

0.94 ± 0.1 

(0.93 - 0.95) 
≤0.001 

0.45 

(0.42 - 0.48) 
≤0.001 

 

  



TABLE S5. Risk Calculator Comparison between Models Trained on “White Race” FLEMENGHO Cohort and Tested on “White 

Race” MESA Cohort. 

Model 
Sn 

(95% CI) 
p-value 

Sp 

(95% CI) 
p-value FN FP TP TN 

Acc 

(95% CI) 
p-value 

NRI 

(95% CI) 
p-value 

Male 

ACC/AHA Risk 

Calculator 
0.85 ± 0.1 

(0.77 - 0.91) 
-- 

0.45 ± 0.1 

(0.42 - 0.48) 
-- 16 602 91 488 

0.48 ± 0.1 

(0.46 - 0.51) 
-- -- -- 

ML Risk 

Calculator  
0.86 ± 0.1 

(0.78 - 0.92) 
≤0.001 

0.78 ± 0.1 

(0.76 - 0.81) 
≤0.001 15 236 92 854 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 

0.34 

(0.31 - 0.37) 
≤0.001 

Female 

ACC/AHA Risk 

Calculator 
0.58 ± 0.1 

(0.49 - 0.68) 
-- 

0.72 ± 0.1 

(0.70 - 0.75) 
-- 34 336 46 871 

0.71 ± 0.1 

(0.69 - 0.74) 
-- -- -- 

ML Risk 

Calculator  
0.78 ± 0.1 

(0.67 - 0.86) 
≤0.001 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 18 253 62 954 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 

0.27 

(0.25 - 0.30) 
≤0.001 

All 

ACC/AHA Risk 

Calculator 
0.73 ± 0.1 

(0.66 - 0.79) 
-- 

0.59 ± 0.1 

(0.57 - 0.61) 
-- 50 938 137 1,359 

0.60 ± 0.1 

(0.58 - 0.62) 
-- -- -- 

ML Risk 

Calculator  
0.82 ± 0.1 

(0.76 - 0.87) 
≤0.001 

0.79 ± 0.1 

(0.77 - 0.80) 
≤0.001 33 489 154 1,808 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 

0.29 

(0.27 - 0.31) 
≤0.001 

  



TABLE S6. Characteristics of Synthetic Data Generated by NEATER for “Male White Race” MESA Cohort and Subgroups of 

Interest. Continuous variables are expressed as mean ± standard deviation. Categorical variables are presented as absolute numbers 

and frequencies. 

  Synthetic Data 

Generated by NEATER 

(N = 824) 

Synthetic Data 

Kept by NEATER 

(N = 467) 

p-value*  Synthetic Data 

Discarded  by NEATER 

(N = 357) 

p-value† 

 

Majority 

Data 

(N = 1,090) 

Age, y 65.5 ± 8.1 66.2 ± 7.7 0.015 64.7 ± 8.5 0.019 61.6 ± 9.6 

Total Cholesterol, n% 191.6 ± 30.9 192.6 ± 29.5 0.378 190.5 ± 32.8 0.369 189.4 ± 34.9 

HDL, mg/dL 42.1 ± 10.7 41.3 ± 10.9 0.012 43.1 ± 10.2 0.010 45.4 ± 12.0 

SBP, mg/dL 132.8 ± 19.2 135.7 ± 19.9 0.002 129.9 ± 17.7 0.001 122.8 ± 17.9 

Hypertension, n% 333 (40.4%) 190 (40.7%) 0.486 143 (40.1%) 0.464 347 (31.8%) 

Diabetes, n% 159 (19.3%) 86 (18.4%) 0.923 73 (20.4%) 0.855 62 (5.7%) 

Smoking, n%   0.834  0.738  

Current Smoking 120 (14.6%) 68 (14.6%) 52 (14.6%) 117 (10.7%) 

Prior Smoking 416 (50.5%) 239 (51.1%) 177 (49.6%) 536 (49.2%) 

Never Smoking 288 (34.9%) 160 (34.3%) 128 (35.8%) 437 (40.1%) 



* Interaction between all synthetic data and synthetic data kept by NEATER using multivariate ANOVA 

† Interaction between all synthetic data and synthetic data discarded by NEATER using multivariate ANOVA 



FIGURE S1. SVM separating hyper-surface for male-group in MESA cohort for classifying (a) 

Hard CVD events and (b) All CVD events. 

 

(a) 

 

(b) 



FIGURE S2. ROC curves for prediction of (a) Hard CVD events and (b) All CVD events, 

excluding the statin users, comparing the ML Risk Calculator (blue) with the ACC/AHA Risk 

Calculator (red). AUC: Area under the curve. 

 

 

(a) 



 

(b) 

  



FIGURE S3. Breakdown of the missed (a) Hard CVD events and (b) All CVD events comparing 

the ML Risk Calculator (blue) with the ACC/AHA Risk Calculator (red). MI: myocardial 

infarction; CHD: coronary heart disease; CVD: cardiovascular disease; CHF: congestive heart 

failures; PVD: peripheral vascular diseases; PTCA: percutaneous transluminal coronary 

angioplasties; CBG: coronary bypass grafts; TIA: transient ischemic attacks. 

 

 

(a) 



 

(b)  



FIGURE S4. ROC curves for prediction of Hard CVD events (a) when training and testing on 

“White Race” MESA cohort, and (b) when training on “White Race” MESA cohort and testing 

on FLEMENGHO cohort comparing the ML Risk Calculator (blue) with the ACC/AHA Risk 

Calculator (red). AUC: Area under the curve. 
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